亚洲综合在线观看视频,国产成人精品一区二区三区,国产欧美亚洲三区久在线观看

Pipe replacement and renovation

Replacing stainless steel pipes for oil coolers

Oil cooler tube change, oil cooler tube change, stainless steel tube heat exchange tube specification: diameter Ф 12~ Ф 32mm, wall thickness 0.6-3.0mm, deviation value of pipe wall thickness 0.05mm, length can be divided into fixed length and indefinite length- The types of stainless steel pipes used include 304, 304L, 316, 316L, 317, and 317L.
Online inquiry
  • Content details

Overview of replacing stainless steel pipes for oil coolers:


Lianyungang Lingdong Electromechanical Equipment Co., Ltd. is engaged in the transformation of oil cooler tubes and copper tubes into stainless steel tubes. 304/316l stainless steel tube heat exchange tubes have high resistance to vibration, scaling, and corrosion. Stainless steel tube heat exchange tubes have overcome the industry's previous challenges of reducing wall thickness to enhance heat transfer or using spiral rolling on the tube wall to weaken tube stiffness, resulting in reduced wall thickness, enhanced heat transfer, and increased stiffness, Simultaneously possessing anti vibration and anti scaling properties.


Introduction to Welding Steel Pipe for Stainless Steel Pipe Replacement of Oil Cooler:


Welded steel pipes (also known as slotted pipes and welded pipes) for oil cooler tube replacement are mainly used in auxiliary machinery in industries such as thermal power generation, chemical industry, and steel, such as condenser tube replacement and heater tube replacement, tubular oil cooler tube replacement, oil-water cooler tube replacement, tubular oil cooler tube replacement, Le tube cooler tube replacement, turbine oil cooler tube replacement, marine oil cooler tube replacement, chiller -304/316l stainless steel tube replacement, condenser -304/316l stainless steel tube replacement, Heat exchanger - replace 304/316l stainless steel tubes, heat exchanger - replace 304/316l stainless steel tubes, shaft seal heater - replace 304/316l stainless steel tubes, steam seal heater - replace 304/316l stainless steel tubes, low-pressure heater - replace 304/316l stainless steel tubes, air preheater - replace tubes, air cooler - replace tubes, waste heat recovery device - replace tubes, volumetric heat exchanger - replace tubes, energy harvester - replace tubes, and involve tube bundle tube exchange. Oil cooler tube change, oil cooler tube change, stainless steel tube heat exchange tube specification: diameter Ф 12~ Ф 32mm, with a wall thickness of 0.6-3.0mm. The deviation value of the pipe wall thickness is ± 0.05mm, and there are two types of lengths: fixed length and indefinite length- The types of stainless steel pipes used include 304, 304L, 316, 316L, 317, and 317L.


The main modifications for the oil cooler tube and core replacement are the following:


When purchasing an oil cooler for tube and core replacement, the cooling area should be informed, and the cooling forms can be divided into LY type light tube (for use) and LYC type fin type. Stainless steel tubes are generally selected for heat exchange and cooling, and purple copper, brass, and titanium tubes can also be selected as heat exchange components according to user needs. According to the trend of economy, heat transfer, and results, most power plants choose to replace stainless steel tube bundles, which has a certain potential without reducing the rate! Replacing stainless steel pipes for oil coolers is the mainstream choice for pipe and core replacement in power plants


The function of the oil cooler:


During the normal operation of the steam turbine generator set, some work is consumed due to bearing friction. The oil cooler will convert it into heat, causing the lubricating oil temperature of the bearings to increase. If the oil temperature is too high, the bearings may experience softening, deformation, or burning accidents. In order to ensure the normal operation of the bearing, the lubricating oil temperature must be maintained within a certain range. Generally, the oil temperature entering the bearing should be between 35-45 ℃, and the discharge oil temperature of the bearing should rise to 10-15 ℃. Therefore, the oil discharged from the bearing must be cooled before it can be recycled into the bearing lubrication. The auxiliary oil cooler is used to cool the lubricating oil of the main engine. High temperature lubricating oil and low temperature cooling water undergo heat exchange in the oil cooler, and the purpose of controlling the lubricating oil temperature is achieved by adjusting the cooling water flow rate (at the same time, due to the high rotor temperature, especially on the inlet side of the high-pressure cylinder, the journal of the oil cooler also transfers heat outward, so the lubricating oil also has the function of cooling the journal). In order to ensure sufficient safety and recovery of turbine oil cooling during turbine operation, the dual oil cooler consists of two oil coolers with the same area and a three-way valve. It can only work and be used as a backup. If the cooling effect is poor due to high oil temperature or high inlet water temperature of the unit, it can be put into use at the same time, or when cleaning and repairing the oil cooler is needed during operation, the backup oil cooler can be opened without shutting down.


Series and parallel - missing -:


1. The series operation of the oil cooler includes cooling and uniform oil temperature.


2. Shortcomings in series operation of oil coolers: high pressure drop in oil and inability to 刪除late oil during operation.


3. The parallel operation of the oil cooler has a small decrease in oil pressure, convenient 刪除lation, and can be repaired during operation.


4. The shortcomings of parallel operation of oil coolers include poor cooling performance and uneven oil temperature.


Classification and specifications of stainless steel pipes for oil cooler tube replacement:


The classification specifications include stainless steel pipes, stainless steel threaded pipes, stainless steel corrugated pipes, 304 stainless steel pipes, 316L stainless steel pipes, etc. The stainless steel heat exchange pipes developed by Lianyungang Lingdong Electromechanical Equipment Co., Ltd. are made of high-quality stainless steel pipes.


Process flow of stainless steel welded pipes:


Stainless steel strip, formed by cold drawing, hot drawing, and strip steel, is produced and processed through a series of processes such as coiling, welding, flaw detection, rolling, polishing, solid melting, and polishing for 304 stainless steel pipes and 316L stainless steel pipes; We can produce various stainless steel pipe specifications such as different pipe diameters, wall thicknesses, and length forms according to the needs of users.


Process requirements for replacing stainless steel pipes in oil coolers:


1. Preparation of stainless steel pipe: After passing the inspection, cut the stainless steel pipe according to the size of the oil cooler. The stainless steel pipe should be 4-5 millimeters longer than the pipe plate. Remove burrs from both ends of the stainless steel pipe, polish the expanded part of the pipe smooth, and perform tempering treatment at about 50 millimeters at both ends.


2. Remove old stainless steel tubes: Use a semi-circular triangular chisel to remove them. When removing, be careful not to damage the tube plate. Polish the stainless steel tube, remove the old stainless steel tube, clean the tube plate hole, polish it with a fine sandcloth, and wipe off the dust with a cloth.


3. Pipe threading and expansion: After both the pipe plate and stainless steel pipe are prepared, they can be threaded through the stainless steel pipe. Be careful not to use too much force or force, align them with your own hole position, and install them. The exposed parts at both ends of the pipe should be equal. The diameter of the pipe plate hole is slightly larger than the pipe diameter, about 0.5 millimeters, and should not be too large or too small. After the stainless steel pipe is threaded, a pipe expander can be used to expand the mouth. When expanding the pipe, the force and speed should not be too large or too small. The length of the expanded pipe should be 2/3 of the thickness of the pipe plate, and should not be greater than the thickness of the pipe plate. After the expansion is completed, both ends should be flanged with a punch.


4. When replacing stainless steel pipes, it is necessary to replace them half by half, and then disassemble the other half.


5. The welded joint after pipe replacement needs to undergo leakage or damage testing.


6. The oil cooler tube and core replacement renovation basically involves dismantling the entire oil cooler equipment and shipping it to our company for tube bundle replacement. This is more economical than on-site tube replacement - it increases the speed of tube and core replacement. The replacement speed of the oil cooler is slow during the production time of the pipes, as they are all customized. After the pipes are replaced, the assembly speed of the replacement pipes can be completed in 3-5 days!


Seamed stainless steel pipes (welded pipes, also known as straight seam pipes) are used for the replacement of oil coolers


The welded steel pipe used for the replacement of the oil cooler is manufactured using imported pipe making equipment, which is equivalent to or slightly stronger than stainless steel pipes. The metallographic structure of the weld seam is slightly different from that of the base material, and the mechanical properties such as strength are also slightly different. Due to the uniform thickness and smooth surface of the stainless steel pipe strip, it is indeed better than cold drawn, hot rolled, and seam stainless steel pipes of the same material. The elongation is greater than 35%, and the hardness is small, making it easy to expand and connect.


The stainless steel pipe for oil cooler replacement has the following features:


1. Stainless steel tube heat exchange tube heat transfer energy. Due to the use of thin-walled stainless steel tubes with a wall thickness of 0.5-0.7mm, the overall heat transfer energy is improved. Under the same heat exchange area, the overall heat transfer coefficient is 2.124-8.408% higher than that of copper tubes.


2. Due to the use of American standard AISl304, 316l and other stainless alloy steels for the pipes, they have high hardness and the rigidity of stainless steel pipes is also significantly improved. Therefore, it has strong impact energy and anti vibration energy of high-temperature steam.


3. Due to the smooth inner wall of stainless steel pipes, the thickness of the bottom layer of the boundary laminar flow is reduced, which not only enhances heat transfer but also improves the ability to resist scaling.


4. Oil cooler tube change, oil cooler tube change, stainless steel tube heat exchange tube process, using the expansion tube technology of transmission, the outer diameter tolerance of stainless steel tube is the same as that of copper tube, without changing the machining tolerance of tube plate hole, which is conducive to direct on-site selection and convenient for unit oil cooler tube change.


5.304/316l stainless steel heat exchange tubes are economical. Under the same heat exchange area, the cost of stainless steel tubes is about 80% of the cost of copper tubes, and can be directly transformed into tube bundles.


In order to eliminate welding stress on heat exchange tubes, heat treatment is carried out at a high temperature of 1050 ℃ under protective gas.


7. All pipes are subjected to pressure difference method for leakage inspection, with a pressure test reaching 1.0Mpa and a pressure drop of 5 minutes.


Oil cooler tube replacement, oil cooler tube replacement, stainless steel tube structure ---:


1. Heat transfer energy difference, due to the use of thin-walled stainless steel tubes with a wall thickness of 0.5-0.8mm, the heat transfer energy is improved. Under the same heat transfer area, 304/316L stainless steel heat transfer tubes are about 1.2-1.30 times larger than copper tubes


2. Strong corrosion resistance, corrosion resistance, ammonia corrosion, and general corrosion. 304/316L stainless steel heat exchange tubes can be used for more than 10 years.


3. Due to the use of high-energy stainless alloy steels such as TP304 and TP316L as stainless steel materials, the surface has high strength, and the inner wall of the pipe is smooth, which reduces the thickness of the boundary laminar flow layer. Therefore, it has strong high-temperature steam erosion energy.


4. The rigidity and vibration resistance of the pipe are improved.


5. Strengthening the heat exchange tube has improved the ability to resist scaling.


6. The process of installing stainless steel heat exchange tubes can be achieved by using the expansion tube technology of transmission. The outer diameter tolerance is consistent with the steel pipe, and there is no need to change the machining tolerance of the tube plate hole, which is conducive to direct selection and convenient for replacing stainless steel tubes with copper tubes in the unit


7. Economically, under the same heat exchange area, the cost is about 60% of copper tubes, and stainless steel heat exchange tubes can be directly used for tube exchange.


8. Stainless steel heat exchange tubes are made by highly automated pipe making equipment, which is formed by self corrosion solution welding and flipping. Under any metal filler, they are filled with gas protection (inner and outer sides of the tube) and welded. The welding method is TIG process and undergoes in solution eddy current testing.


9. In order to eliminate the stress on the pipe, heat treatment can be carried out at a high temperature of 1040 ℃ under protective gas, or time-vibration treatment can be carried out as needed.


10. All steel pipes shall be subjected to water pressure pneumatic testing one by one, and the pressure shall be tested to within 10Mpa for 10 seconds before depressurization.


11. After leaving the factory, conduct eddy current testing on each tube, with a frequency of 10-30 kHz.


12. The outer diameter deviation of the pipe is generally ± 0.10mm, the wall thickness deviation is ± 10%, and the length deviation is ± 5mm.


13. All pipes shall be checked for their full length using a gauge.


14. The raw materials entering the factory and the finished products being shipped are both tested and a test report is issued.


The general principle for selecting pipes for tube bundle replacement is:


1. No severe corrosion leakage, use as long as possible, erosion and wear, vibration resistance, high heat transfer coefficient, and reasonable structure. For decades, copper pipes have been used in my condensers, oil coolers, chillers, and other equipment due to their high thermal conductivity.


2. In practice, some copper pipes of the condenser are subjected to severe ammonia corrosion, while others are subjected to severe wear and tear. These two phenomena cause copper pipes to leak tightly, greatly reducing the use of copper pipes, reducing the safety and economy of unit operation, and increasing the time for shutdown and replacement of copper pipes. Therefore, many people have started to consider the issue of condenser pipe materials.


In recent years, stainless steel heat exchange tubes have been widely used in condensers, oil coolers, air coolers, low-pressure heaters, high-pressure heaters, air coolers, heat exchangers, chillers, and air preheaters. According to incomplete calculations, the units used are over 50%, including 50-300MW units. The use of 304/316l stainless steel heat exchange tubes has broken the traditional concept of only using copper tubes, improved equipment safety and economy, and reduced investment.


However, there are still many people who lack interest in using stainless steel heat exchange tubes for oil cooler tube replacement. The main reason is that the thermal conductivity of stainless steel tube heat exchange tubes is much lower than that of copper tubes, which may affect heat transfer. For this reason, relevant units have conducted many studies on the overall heat transfer coefficient of stainless steel heat exchange tubes used in condensers, and have achieved great results. More and more power plants are replacing copper pipes with stainless steel pipes.

Cooling equipment - using stainless steel heat exchange tubes (cooling tubes):


Stainless steel heat exchange tubes and cooling tubes are produced using advanced automation, technology, and process. Select ASTM 304 and 316L standard stainless steel materials for good processing and production.


Stainless steel pipes are used for oil cooler tube replacement -


-High temperature steam, erosion resistance, anti scaling, anti oxidation corrosion, strong vibration resistance, and wear resistance.


Heat exchange - material -, thin tube wall, smooth inner wall, and enhanced heat transfer.


Safety: High temperature steam, erosion resistance, strong vibration resistance.


Economy - Same heat exchange area, cost savings (about 80/100 of copper pipes).


Summary - Internal and external design and operation experience. Compared with brass pipes, the welding of stainless steel heat exchange pipes in oil coolers has the following advantages:


1. Stainless steel heat exchange tubes are three times more corrosion-resistant, vibration resistant, and wear-resistant than copper tubes, and can be used;


2. Stainless steel pipes are not easy to stain or scale, and can last for 10-20 years;


3. Although the thermal conductivity of stainless steel heat exchange tubes is inferior to that of copper, the wall thermal resistance only accounts for 3% to 5% of the total thermal resistance. Due to the increase in water velocity inside the pipe, the increase in cleanliness coefficient, and the decrease in wall thickness, the heat transfer energy of stainless steel is higher than that of copper alloy;


4. The manufacturing technology, specifications, performance indicators, inspection methods, and scale of the inner thin-walled welded oil cooler tube replacement have all reached an international level;


5. The thermal conductivity coefficient of stainless steel pipes is lower than that of copper pipes, but the difference in thermal conductivity coefficient is reduced by reducing the wall thickness. Due to the smoother inner wall compared to copper pipes, the convective heat transfer coefficient is higher than copper pipes, and the smoother outer wall compared to copper pipes, the condensation heat release coefficient is higher than copper pipes. According to the testing and calculation of one unit, the overall heat transfer coefficient of stainless steel pipes with a wall thickness of 0.7mm is about 2.124% higher than that of copper pipes with a wall thickness of 1mm;


6. As the operating time increases, the overall heat transfer coefficient of stainless steel pipes decreases slowly, while the overall heat transfer coefficient of copper pipes decreases much faster than that of stainless steel pipes. In the long run, using it as a whole improves the economy of the unit, while also improving the safety of the unit.


Instructions for ordering oil cooler tube and core replacement renovation:


1) Model of steam turbine unit


2) Cooling oil quantity


3) Cooling area of oil cooler


4) Oil cooler model


5) Do you need to replace the oil cooler pipes? Or is it about replacing the core of the oil cooler (meaning replacing the tube plate, partition, and tube)?


6) The quantity, wall thickness, and length dimensions of oil cooler tube replacement.


7) The replacement of the oil cooler requires the provision of the chloride ion content of the water used.


Oil cooler model parameters:


 
汽輪機規(guī)格冷油器型號冷卻面積
(m2)
冷卻油量
(t/h)
進油設(shè)計溫度
(℃)
出油設(shè)計溫度
(℃)
設(shè)計水量
(t/h)
配套臺數(shù)-高工作水溫
(℃)
N1.5MWLY-10108554525133
N3MWLY-10108554525233
N6MWLY-12.512.58.7554525233
N12MWLY-17.517.512.6554530233
N15MWLY-202012.6554530233
N20MWLY-303027554565233
N25MWLY-353530554585233
N30MWLY-424236.95545102233
N50MWLY-4848405545112233
N100MWLY-5555475545135233
N125MWLY-606052.85545150233
N135MWLY-606052.85545150233
N200MWLY-7575725545170233
N300MWLY-95951205545200233













































以下304不銹鋼管/316L不銹鋼管換熱管規(guī)格技術(shù)參數(shù)僅供參考,詳細參數(shù)電話咨詢我們!以實際管束為準(zhǔn),可按客戶要求設(shè)計相應(yīng)管束!
材料OSIMNPSNICRMOn-2000n-4200
304≤≤0.0800.752.000.0400.0308.00-11.0018.00-20.00-20004200
304L≤0.0350.752.000.0400.0308.00-13.0018.00-20.00-

316≤0.0800.752.000.0400.03010.00-14.0016.00-18.002.00-3.0083009600
316L≤0.0350.752.000.0400.03010.00-15.0016.00-18.002.00-3.0045007043

NOHFCOAIV317441504680
不銹鋼管∠∠0.020.050.0150.250.122.5-3.52.0-3.0


型號
1Φ14×0.5Φ14×0.6Φ14×0.7Φ14×0.8


2Φ15×0.5Φ15×0.6Φ15×0.7Φ15×0.8


3Φ16×0.5Φ16×0.6Φ16×0.7Φ16×0.8


4Φ18×0.5Φ18×0.6Φ18×0.7Φ18×0.8


5Φ19×0.5Φ19×0.6Φ19×0.7Φ19×0.8


6Φ20×0.5Φ20×0.6Φ20×0.7Φ20×0.8Φ20×1.0

7Φ22×0.5Φ22×0.6Φ22×0.7Φ22×0.8Φ22×1.0Φ22×1.2
8Φ25×0.5Φ25×0.6Φ25×0.7Φ25×0.8Φ25×1.0Φ25×1.2Φ25×1.5
9Φ26×0.5Φ26×0.6Φ26×0.7Φ26×0.8Φ28×1.0Φ28×1.2Φ28×1.5
10
Φ30×0.6Φ30×0.7Φ30×0.8Φ30×1.0Φ30×1.2Φ30×1.5
11

Φ32×0.7Φ32×0.8Φ32×1.0Φ32×1.2Φ32×1.5

不銹鋼管各種型號化學(xué)成分對照表:
管材型號規(guī)格磷 
(P)

(S)
硅 
( Si )
鎳 
( Ni )
鉻 
(CR )
鉬 
(Mo)
CMn
304≤0.08≤2.00≤0.035≤0.03≤0.1≤8.00-10.50≤18.00-20.00
304L≤0.03≤2.00≤0.035≤0.03≤0.1≤9.00-13.00≤18.00-20.00
316≤0.08≤2.00≤0.035≤0.03≤0.1≤10.00-14.00≤16.00-18.002.00-3.00
316L≤0.03≤2.00≤0.035≤0.03≤0.1≤10.00-14.00≤16.00-18.002.00-3.00









銅管與不銹鋼管換熱遙遙能對照表:
名稱

規(guī)格材質(zhì)總體換熱系數(shù)(W/m2.k)不銹鋼管與銅管比
總體換熱系數(shù)提高%




銅管

1.0(mm)HSn70-1A3682.4138690

不銹鋼管

1.0(mm)304,304l,316,316L3460.327347-6

不銹鋼管

0.7(mm)304,304l,316,316L3760.6284762.214

不銹鋼管

0.6(mm)304,304l,316,316L3872.6067295.214

不銹鋼管

0.5(mm)304,304l,316,316L3992.0159688.408










介質(zhì)水-適應(yīng)氯離子含量指標(biāo)對照表:
管材

H68-AHSn70-1TP304,TP304LTP316,TP316LTP317,TP317L


長期遙遙
氯離子含量
(mg/L)


≤50≤100≤150≤300≤500
短期遙遙
氯離子含量
(mg/L)


≤100≤200≤300≤500≤1000











產(chǎn)品動態(tài)

Copyright ? 2012-2023 Lianyungang Lingdong Electromechanical Equipment Co., Ltd all rights reserved

Tel

0518-85370171

  1. <rt id="jmpvv"><progress id="jmpvv"><track id="jmpvv"></track></progress></rt>

    <li id="jmpvv"><dl id="jmpvv"></dl></li>
    1. <li id="jmpvv"><dl id="jmpvv"></dl></li>
        主站蜘蛛池模板: 云安县| 宁强县| 安吉县| 普兰县| 抚顺市| 昌乐县| 浦东新区| 勃利县| 临西县| 江油市| 双牌县| 涡阳县| 合江县| 福贡县| 绥阳县| 和静县| 龙门县| 共和县| 从江县| 全南县| 白银市| 遂溪县| 怀化市| 兴海县| 淮北市| 襄汾县| 晴隆县| 泽州县| 蒙阴县| 定兴县| 延庆县| 济宁市| 衡东县| 红原县| 固原市| 景洪市| 宁南县| 新田县| 敖汉旗| 新河县| 牟定县|